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Abstract
The central limit theorem (CLT) can be ranked among the most important
ones in probability theory and statistics and plays an essential role in several
basic and applied disciplines, notably in statistical thermodynamics. We show
that there exists a natural extension of the CLT from exponentials to so-called
deformed exponentials (also denoted as q-Gaussians). Our proposal applies
exactly in the usual conditions in which the classical CLT is used.

PACS numbers: 05.40.−a, 05.20.Gg, 02.50.−r

1. Introduction

The central limit theorems (CLT) can be ranked among the most important ones in probability
theory and statistics and play an essential role in several basic and applied disciplines, notably
in statistical mechanics. Pioneers like A de Moivre, P S de Laplace, S D Poisson and
C F Gauss have shown that the Gaussian function is the attractor of independent systems with
a finite second variance. Distinguished authors like Chebyshev, Markov, Liapounov, Feller,
Lindeberg and Levy have also made essential contributions to the CLT development. As far as
physics is concerned one can state that, starting from any system, with any distribution function
(for some measurable quantity x), and combining a sufficiently large number of such systems
together, the resultant distribution function (for x) is always Gaussian. This proposition
derives from the central limit theorem. Thus, for physics the CLT is one of the most important
theorems in the whole of mathematics since it guarantees that the probability distribution
(PD) of any measurable quantity is Gaussian, provided that a sufficiently large number of
statistically independent observations are made. One can, therefore, confidently predict that
Gaussian distributions are going to crop up all over the place in statistical thermodynamics.
An interesting physical question, to be addressed here, emerges naturally: what if for some
other PD a CLT ensues? Will such a distribution crop up all over the place as well? The
answer is a resounding yes. Instead of exponentials we will have q-exponentials [1], widely
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employed nowadays in several scientific disciplines. The form of these functions is given
below.

2. Preliminaries

We posed a question above that was first successfully addressed by Umarov et al [2]. However,
they needed complicated conditions, such as q-independence and nonlinear Fourier transforms,
that we will avoid in what follows by using a quite different approach.

The random variables to which the classical CLT refers are required to be independent.
Subsequent efforts along CLT lines have established corresponding theorems for weakly
dependent random variables as well (see some pertinent and important references in [2–4]).
The CLT does not hold if correlations between far-ranging random variables are not negligible
(see [5]).

Recent developments in statistical mechanics that have attracted the attention of
many researches do deal with strongly correlated random variables ([1] and references
therein). These correlations do not rapidly decrease with any increasing distance between
random variables and are often referred to as global correlations (see [6] for a definition).
Is there an attractor that would replace the Gaussians in such a case?.

The answer is in the affirmative, as shown in [2–4], with the deformed or q-Gaussian
playing the starring role. It is asserted in [3] that such a theorem cannot be obtained if we
rely on classic algebra. It needs a construction based on a special algebra, which is called
q-mathematics. The goal of this communication is to show that a q-generalization of the
central limit theorem becomes indeed possible (and is relatively simple) without recourse to
q-mathematics.

2.1. Systems that are q-distributed

Consider a system S described by a d-component vector X whose covariance matrix reads

K = 〈XXt 〉 ≡ EXXt, (1)

the superscript t indicating transposition. We say that X is q-Gaussian (or deformed Gaussian)
distributed if its probability distribution function writes as described by equations (2) or (7):

• In the case 1 < q < d+4
d+2

fX,q (X) = Aq(1 + Xt�−1X)
1

1−q , (2)

with matrix � being related to K in the fashion [7]

� = (m − 2)K, (3)

where the number of degrees of freedom m is defined in terms of the number of X-
components d as [7]

m = 2

q − 1
− d. (4)

Moreover, the so-called partition function Zq = 1/Aq reads [7]

Zq =
�

(
1

q−1 − d
2

)|π�|1/2

�
(

1
q−1

) , (5)

and the characteristic function is

ϕX(U) = 21− m
2

�
(

m
2

)z
m
2 Km

2
(z), (6)
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with z = √
Ut�U and Km/2 the modified Bessel function of the second kind.

• In the case q < 1

fX,q(X) = Aq(1 − Xt�−1X)
1

1−q

+ , (7)

where the matrix � is related to the covariance one (1) via � = dK . We need here a
parameter p (see below) defined as

p = 2
2 − q

1 − q
+ d, (8)

so that the partition reads

Zq =
�

( 2−q

1−q

)|π�|1/2

�
( 2−q

q−1 + d
2

) , (9)

and the characteristic function is

ϕX(U) = 2
p

2 −1�
(p

2

) Jp

2 −1(z)

z
p

2 −1
, (10)

where z = √
Ut�U and Jp/2−1 is the Bessel function of the first kind.

3. Our particular road towards a new CLT

As stated above, several attempts to generalize the central limit theorem (CLT) so that the
Gaussian is replaced as the attractor by the q-Gaussian have been published recently [2–4].
We recall here a basic multivariate version of the conventional CLT.

Theorem 3.1. Let X1, X2, . . . be independent and identically distributed (i.i.d.) random
vectors in R

d with E[Xi] = 0 and E
[
XiX

t
i

] = K and let

Wn = 1√
n

n∑
i=1

Xi. (11)

One has3

∀ t ∈ R
d , lim

n→+∞ Pr{Wn � t} = �1(t) = 1

|2πK|1/2

∫ t1

−∞
· · ·

∫ td

−∞
e− Xt K−1X

2 dX.

The basic idea towards non-conventional CLTs is to find conditions under which convergence
to the usual normal distribution �1 with covariance matrix K is replaced by convergence to a
q-Gaussian distribution

�q (t) =
∫ t1

−∞
· · ·

∫ td

−∞
fX,q(X) dX1 · · · dXd (12)

with, for q > 1, fX,q as defined in (2) and parameter m defined by (4) or, for q < 1, fX,q as
defined in (7) and parameter p defined by (8), which play the CLT-attractor role of Gaussian
distributions. We note that both cases m → +∞ and p → +∞ correspond to convergence
q → 1 to the Gaussian case.

In two recent contributions [2, 3], S Umarov and C Tsallis highlight the existence of such
a multivariate central limit theorem, provided there exists a certain kind of dependence, called

3 Note that inequality between vectors Wn � t denotes the set of d componentwise inequalities {Wn(k) � tk; 1 �
k � d}.
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q-independence, between random vectors Xi . This q-independence can be characterized in
terms of the q-Fourier transform Fq and of the q-product ⊗q as

Fq[X1 + X2] = Fq[X1] ⊗q Fq[X2]

and reduces to the classical independence for q = 1.

We recall that the q-product of x and y is defined, for x1−q + y1−q � 1, as

x ⊗q y = (x1−q + y1−q − 1)
1

1−q

and the q-Fourier transform of a function f (x), x ∈ R
d , is

Fq[f ](ξ) =
∫

R
d

(f 1−q(x) + (1 − q)ixtξ)
1

1−q dX.

For the conditions of existence of this q-Fourier transform, see [3, corollary 2.4]. This approach
suffers from the lack of physical interpretation for such special dependence; moreover, the
q-Fourier transform is a nonlinear transform (unless q = 1) what makes it rather awkward
to use.

Another approach, as described in [8], consists in keeping the independence assumption
between vectors Xi while replacing the n terms in (11) by a random number N(n) of terms.
That is, if the random variable N(n) follows a negative binomial then convergence to a
q-Gaussian distribution occurs whenever convergence occurs in the usual sense.

In the present contribution we show that there exists a much more natural way (that
applies for instance to the case of fluctuating temperatures) to extend the CLT based on the
Beck–Cohen notion of superstatistics [10] (see the discussion in [11]). Our ‘starting point’ is
the same as that in Umarov’s approach (i.e., assuming some kind of dependence between the
summed terms). However, the manner in which we introduce this dependence among data is
a natural one that can be given several physical interpretations.

4. Present results

Our present results can be conveniently condensed by stating two theorems, according to the
q-value. The distinction before these two cases is usual in the theory of nonextensivity; it
is due to the fundamentally different behaviour of the q-Gaussian distributions, which are
Gaussian scale mixtures with unbounded support for q > 1, contrarily to the case q < 1. The
extended central limit theorems we are here advancing are given below.

The essential idea in our approach is that of suitably introducing a random variable a that
is chi distributed with m degrees of freedom and then constructing the ‘scale mixtures’ (typical
of superstatistics [11])

Zn = 1

a
√

n

n∑
i=1

Xi. (13)

4.1. The case q > 1

Theorem 4.1. If X1, X2, . . . are i.i.d. random vectors in R
d with zero mean and covariance

matrix K, and if a denotes a random variable chi distributed with m degrees of freedom, scale
parameter (m − 2)−1/2, and independent of Xi, then random vectors

Zn = 1

a
√

n

n∑
i=1

Xi (14)
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converge weakly to a multivariate q-Gaussian vector Z with covariance matrix K. Equivalently
stated

∀ t ∈ R
d , lim

n→+∞ Pr{Zn � t} = �q(t); (15)

with characteristic distribution function (cdf) �q(t) defined as in (12). Moreover,

q = m + d + 2

m + d
. (16)

Proof. First we note that the χ -density with m degrees of freedom and scale parameter 1√
m−2

is

fa(a) = 21− m
2 (m − 2)

m
2

�
(

m
2

) am−1 e− a2(m−2)

2 .

Now, by the multivariate central limit theorem that we have remembered above (note that,
below, symbol ⇒ denotes weak convergence)

1√
n

n∑
i=1

Xi ⇒ N

where N is a normal vector in R
d with covariance matrix K. Applying from [12] its result

(theorem 2.8) we immediately deduce that

Zn ⇒ N

a

follows a q-Gaussian distribution with covariance matrix K and parameter q defined
by (4). �

4.2. The case q < 1

Extension to the case q < 1 proceeds as follows.

Theorem 4.2. If X1, X2, . . . are i.i.d. random vectors in R
d with zero mean and covariance

matrix K, and if a is a random variable independent of Xi that is chi distributed with m degrees
of freedom and scale parameter

√
m − 2, then the random vectors

Yn =
1√
n

∑n
i=1 Xi√

a2 +
(

1√
n

∑n
i=1 Xi

)t
K−1

(
1√
n

∑n
i=1 Xi

) (17)

converge weakly to a multivariate q-Gaussian vector Y with covariance matrix K and
distribution function given by (12). Moreover,

q = m − 4

m − 2
< 1. (18)

Proof. If Z has cdf given by (12), then [8]

Y = φ(Z) = Z√
1 + ZtK−1Z

has cdf given by (12). Since the function φ = R
d → R

d is continuous, the desired
result is deduced by the application of the continuous mapping theorem (see [13],
theorem 2.3, p 7). �
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Remark. We note that Yn in (17) is a normalized version of sum (14); however, the random
fluctuation term a is replaced by a fluctuating term

b =
√√√√a2 +

(
1√
n

n∑
i=1

Xi

)t

K−1

(
1√
n

n∑
i=1

Xi

)

that involves the value of the sum itself—and thus is not independent of this sum anymore.
Thus, the case q < 1 can be considered as a fluctuating version of the usual CLT for which
the fluctuation depends on the state of the system. Moreover, it is intuitive that as n grows, the
distribution of the fluctuation b gets closer to a chi distribution with m + n degrees of freedom.
At last, a geometric interpretation of this fluctuation term can be given, see [9].

4.3. Link with q-independence

Although the extensions of the CLT proposed above differ from those developed by [2], a link
can be established between both approaches, for large values of n, as follows.

Theorem 4.3 (linking theorem). Consider n = 2n0 with n0 large and divide the sum Zn

in (14) into two parts as

Zn = 1

a
√

n


 n0∑

i=1

Xi +
n∑

i=n0+1

Xi


 = Z(1)

n + Z(2)
n . (19)

If the characteristic function φ of Xi is such that
∫

R
d |φ|νdt < ∞ for some ν � 1, then random

vectors Z(1)
n and Z(2)

n are almost q-independent in the sense that

∀ε > 0, ∃N s.t. n > N ⇒ ∥∥Fq

(
Z(1)

n + Z(2)
n

) − Fq

(
Z(1)

n

) ⊗q Fq

(
Z(2)

n

)∥∥
∞ < ε.

For didactic reasons we postpone the proof of this result to the next section. We deduce from
it that, asymptotically, the CLT theorem 4.1 exactly generates the q-independence condition
required for the application of the particular CLT version proposed in [2, 3].

5. Proof of the linking theorem

5.1. Introduction

In order to simplify the proof we will assume that vectors Xi verify a stronger CLT version
than that stated in theorem 3.1, which might be called a ‘CLT in total variation’. Now, the
‘total variation’ divergence between two probability densities f and g is

dTV(f, g) = 1

2

∫
R

d

|f − g|. (20)

If U and V are random vectors distributed according to f and g, respectively, we will denote

dTV(U, V ) = dTV(f, g).

The total variation version of the CLT writes as follows (see [13], theorem 2.31).

Theorem 5.1. Assume that X1, X2, . . . are i.i.d random vectors of R
d with zero mean, finite

covariance matrix K and characteristic function φ such that
∫ |φ|ν dt < ∞ for some ν � 1.

If Zn = 1√
n

∑n
i=1 Xi and Z is a normal vector in R

d with covariance matrix K then

lim
n→+∞ dTV(Zn, Z) = 0. (21)



Fast Track Communication F975

Let us introduce the following notations: Z̃n denotes a version of sum (14) where all Xi

are replaced by i.i.d. Gaussian vectors Ni ∈ R
d with covariance matrix K:

Z̃n = 1

a
√

n


 n0∑

i=1

Ni +
n∑

i=n0+1

Ni


 = Z̃(1)

n + Z̃(2)
n .

The proof of theorem 4.3 is based on the fact that Z̃(1)
n and Z̃(2)

n are exactly q-independent
(see theorem 5.2 below). Since n is large, according to the above ‘total variation’ CLT, Z(1)

n

and Z(2)
n are close to their q-Gaussian counterparts Z̃(1)

n and Z̃n
(2)

, respectively. It remains to
check that the closeness between these vectors can be stated in terms of their q-transforms.
We proceed in five steps that invoke technical lemmas that are the subject of subsection 5.3:

• Step 1. Components Z̃(1)
n and Z̃n

(2)
are exactly q-independent, as will be proved in

subsection 5.2.
• Step 2. Let us fix ε > 0 and consider∥∥Fq

(
Z(1)

n + Z(2)
n

) − Fq

(
Z(1)

n

) ⊗q Fq

(
Z(2)

n

)∥∥
∞ �

∥∥Fq

(
Z(1)

n + Z(2)
n

) − Fq

(
Z̃(1)

n + Z̃(2)
n

)∥∥
∞

+
∥∥Fq

(
Z̃(1)

n

) ⊗q Fq

(
Z̃(2)

n

) − Fq

(
Z(1)

n

) ⊗q Fq

(
Z(2)

n

)∥∥
∞.

• Step 3. The first term
∥∥Fq

[
Z(1)

n + Z(2)
n

] − Fq

[
Z̃(1)

n + Z̃(2)
n

]∥∥
∞ = ‖Fq[Zn] − Fq[Z̃n]‖∞ can

be bounded as follows

‖Fq[Zn] − Fq[Z̃n]‖∞ � 2dTV(Zn, Z̃n) � 2dTV(Xn, X̃n)

where the first inequality follows from lemma 5.3 and the second one from lemma 5.1
below. Thus a value N1 can be chosen so that n0 > N1 and n1 > N1 ensure that this term
is smaller than ε

2 .
• Step 4. The second term

∥∥Fq

[
Z̃(1)

n

] ⊗q1 Fq

[
Z̃(2)

n

] − Fq

[
Z(1)

n

] ⊗q1 Fq

[
Z(2)

n

]∥∥
∞ can be

bounded by applying lemma 5.4 for a large enough value of n = n0 + n1, say n > N2, we
have∥∥Fq

[
Z̃(1)

n

] ⊗q1 Fq

[
Z̃(2)

n

] − Fq

[
Z(1)

n

] ⊗q1 Fq

[
Z(2)

n

]∥∥
∞

� 2dTV
(
Z(1)

n , Z̃(1)
n

)
+ 2dTV

(
Z(2)

n , Z̃(2)
n

)
.

Finally, from the total variation CLT, there exists a value N3 such that n0 > N3 and
n1 > N3 implies that each of both total variation divergences is smaller than ε

4 .
• Step 5. The consideration of N = max(N1, N2, N3) is then seen to prove the linking

theorem 5.3.

5.2. Components of q-Gaussian vectors are q-independent

We first begin to check that ‘sub-vectors’ extracted from q-Gaussian vectors are exactly q-
independent; this result is obvious from the fact that, by the CLT given in [2] (theorem 3.1),
these sub-vectors can be considered as limit cases of sequences of q-independent sequences.
However, the mathematical verification of this property is of an instructive nature and we
proceed to give it. For readability, we will say that X ∼ (q, d) if X is a q-Gaussian vector of
dimension d and nonextensivity parameter q.

Theorem 5.2. If 1 < q0 < 1+ 2
d

and vector X = [
Xt

1, X
t
2

]t ∼ (q0, 2d) with parameter q0 > 1
then vectors X1 ∼ (q, d) and X2 ∼ (q, d) and they are q-independent:

Fq[X1 + X2] = Fq[X1] ⊗q1 Fq[X2] (22)

with q = z(q0) = 2q0+d(1−q0)

2+d(1−q0)
> 1 and q1 = z(q) > 1.
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Proof. Since X1 ∼ (q, d), we know from corollary 2.3 of [2] that Fq[X1] ∼ (q1, d). Moreover,
since X1 and X2 are the components of the same q-Gaussian vector, from [8] we deduce that
X1 + X2 ∼ (q, d) so that Fq[X1 + X2] ∼ (q1, d). Finally, it is easy to check that since
Fq[X1] ∼ (q1, d) and Fq[X2] ∼ (q1, d) then Fq[X1] ⊗q1 Fq[X2] ∼ (q1, d). The fact that both
terms have same covariance matrices is straightforward, what proves the result. �

We note that q-correlation (22) corresponds to q-independence of the third kind as listed
in table 1 of [2]. We pass now to the consideration of the four lemmas invoked in the proof of
the linking theorem.

5.3. Technical lemmas

As we are concerned with scale mixtures of Gaussian vectors, we need the following lemmas.

Lemma 5.1. If U and V are random vectors in R
d and a is a random variable independent

of U and V then

dTV

(
U

a
,
V

a

)
� dTV(U, V ). (23)

Proof. The distributions of scale mixtures U/a and V/a write, in terms of the distributions of
U and V, according to

fU/a(x) =
∫

R
+

1

ad
fa(a)fU

(x

a

)
da, gV/a(x) =

∫
R

+

1

ad
fa(a)fV

(x

a

)
da.

It follows that

dTV

(
U

a
,
V

a

)
= 1

2

∫
R

d

|fU/a(x) − fV/a(x)| dX

= 1

2

∫
R

d

∣∣∣∣
∫

R
+

1

ad
fa(a)

(
fU

(x

a

)
− fV

(x

a

))
da

∣∣∣∣ dX

� 1

2

∫
R

d

∫
R

+

1

ad
fa(a)

∣∣∣fU

(x

a

)
− fV

(x

a

)∣∣∣ da dX

= 1

2

∫
R

+

1

ad
fa(a) da

∫
R

d

|fU(z) − fV (z)|ad dz

= 1

2

∫
R

+
fa(a) da

∫
R

d

|fU(z) − fV (z)| dz

= 1

2

∫
R

d

|fU − fV | = dTV(U, V ).

�

We will also need the following

Lemma 5.2. For q > 1, the function

ψq,z : R
+ → C

x �→ (x1−q + z)
1

1−q

is Lipschitz, with unit constant if Re(z) � 0.

Proof. We have

|ψq,z(x1) − ψq,z(x0)| � sup
x0�x�x1

|ψ ′
q,z(x)||x1 − x0|, (24)
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where

ψ ′
q,z(x) = 1

(1 + zxq−1)
q

q−1

, (25)

with q

q−1 > 0, so that, for x > 0,

|ψ ′
q,z(x)| = 1

|1 + zxq−1| q

q−1

� 1, (26)

if Re(z) � 0. �

Two straight consequences of this inequality are the following lemmas.

Lemma 5.3. For any random vectors U and V, if q � 1, the following inequality holds:

‖Fq[U ] − Fq[V ]‖∞ � 2dTV(U, V ). (27)

Proof. Denote by fU and fV the respective probability densities of U and V : then ∀ ξ ∈ R
d ,

|Fq[U ](ξ)−Fq[V ](ξ)| �
∫

R
d

∣∣(f 1 − q

U (x) + (1 − q)ixtξ
) 1

1 − q

− (
f

1 − q

V (x) + (1 − q)ixtξ
) 1

1 − q
∣∣ dX.

As Re((1 − q)ixtξ) = 0, by lemma 5.2, the integrand is bounded by |fU(x) − fV (x)|; and
since this holds ∀ξ ∈ R

d , the desired result follows. �

We remark here that inequality (27) is a simple generalization of the well-known q = 1
case, in which Fq=1 corresponds to the classical Fourier transform. Thus a well-known result
of the Fourier theory is reproduced, namely,

‖F1[U ] − F1[V ]‖∞ � 2dTV(U, V ).

For notational simplicity, let us denote as Z1 = Z(1)
n , Z2 = Z(2)

n , Z̃1 = Z̃(1)
n and Z̃2 = Z̃(2)

n

those random vectors defined in part IV.A. Then, for n large enough,

‖Fq[Z1](ξ) ⊗q1 Fq[Z2](ξ) − Fq[Z̃1](ξ) ⊗q1 Fq[Z̃2](ξ)‖∞ � 2dTV(Z1, Z̃1) + 2dTV(Z2, Z̃2).

Proof. For any ξ ∈ R
d ,

|Fq[Z1](ξ) ⊗q1 Fq[Z2](ξ) − Fq[Z̃1](ξ) ⊗q1 Fq[Z̃2](ξ)|
�

∣∣Fq[Z1](ξ) ⊗q1 Fq[Z2](ξ) − Fq[Z̃1](ξ) ⊗q1 Fq[Z2](ξ)
∣∣

+
∣∣Fq[Z̃1](ξ) ⊗q1 Fq[Z2](ξ) − Fq[Z̃1](ξ) ⊗q1 Fq[Z̃2](ξ)

∣∣
= ∣∣ψ

q1,F
1−q1
q [Z2](ξ)−1(Fq[Z1](ξ)) − ψ

q1,F
1−q1
q [Z2](ξ)−1(Fq[Z̃1](ξ))

∣∣
+

∣∣ψ
q1,F

1−q1
q [Z̃1](ξ)−1(Fq[Z2](ξ)) − ψ

q1,F
1−q1
q [Z̃1](ξ)−1(Fq[Z̃2](ξ))

∣∣.
Since Z̃2 is q-Gaussian, and since 1 < q < 1 + 2

d
, there exists an α2 � 0 (as given in

equation (15) of reference [2]) such that F
1−q1
q [Z̃2](ξ) − 1 = α2(q1 − 1)ξ 2 so that, since

q1 > 0, it follows that F
1−q1
q [Z̃2](ξ) � 1. From the CLT in total variation, we can choose

n large enough so that dTV(Fq[Z2], Fq[Z̃2]) is arbitrarily small, which in turns implies, by
lemma 5.3 that |Fq[Z2](ξ) − Fq[Z̃2](ξ)| is arbitrarily small as well. By continuity of the
function x �→ x1−q1 − 1, and since Fq[Z2] is real-valued by the symmetry of the data, this
ensures that F

1−q1
q [Z2](ξ) − 1 � 0. Thus, the first term can be bounded using lemma 5.3 in

the fashion∣∣ψ
q1,F

1−q1
q [Z2](ξ)−1(Fq[Z1](ξ)) − ψ

q1,F
1−q1
q [Z2](ξ)−1(Fq[Z̃1](ξ))

∣∣ � |Fq[Z̃1](ξ) − Fq[Z1](ξ)|.
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Accordingly, since Z̃1 is q-Gaussian, there exists α1 � 0 such that F
1−q1
q [Z̃1](ξ) − 1 =

α1(q1 − 1)ξ 2, hence F
1−q1
q [Z̃1](ξ) � 1. Recourse again to lemma 5.3 yields∣∣ψ

q1,F
1−q1
q [Z̃1](ξ)−1(Fq[Z2](ξ)) − ψ

q1,F
1−q1
q [Z̃1](ξ)−1(Fq[Z̃2](ξ))

∣∣
� |Fq[Z̃2](ξ) − Fq[Z2](ξ)|.

applying now lemma 5.3 to each of both terms above yields

|Fq[Z1](ξ) ⊗q1 Fq[Z2](ξ) − Fq[Z̃1](ξ) ⊗q1 Fq[Z̃2](ξ)| � 2dTV(Z1, Z̃1) + 2dTV(Z2, Z̃2).

As this holds for any value of ξ ∈ C, the result follows.

6. Conclusions

We have here dealt with non-conventional central limit theorems, whose attractor is a deformed
or q-Gaussian. Based on the Beck–Cohen notion of superstatistics [10], with scale mixtures
relating random variables à la equation (13), it has been conclusively shown, in the form of
theorems, that there exists an extension of the central limit theorem (CLT) to these deformed
exponentials that is derived via a quite different method than that provided by Umarov and
Tsallis [2]. The latter requires a special ‘q-independence condition on the data’ and nonlinear
Fourier transforms. We avoid theses complications entirely. Our CLT proposal applies exactly
in the usual conditions in which the classical CLT is used. However, links between ours and
the Umarov–Tsallis treatment have been established. Finally, we note that, in the spirit of
superstatistics, convergence to distributions different from q-Gaussians can be obtained using
the proposed approach by properly selecting the distribution of the fluctuation variable a
in (13).
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